INTRODUCTION

Wind energy is now the least expensive way to generate electricity, and is taking an increasingly larger position in both our nation’s and Minnesota’s energy portfolio. Wind energy has no harmful emissions, reduces greenhouse gases, captures local resources for economic gain, and is now cost-competitive with other forms of electric generation. But, like all forms of development, Wind Energy Conversion Systems (WECS) affect nearby land uses (residential homes, agriculture, natural resources), and can change the character of the community in which they are located. As the market for wind energy increases and the cost of installations declines, local governments must ensure the appropriate policies or zoning tools are in place. While large wind farms are exempt from local regulation, the State must consider local priorities and regulations in environmental review; thus, local standards still affect the design of wind energy systems.

Although most of Minnesota’s wind energy resource is in rural areas, even urban areas are having to address wind energy development. Increasing numbers of urban residents and businesses are looking for opportunities to improve sustainability and energy independence. The land use conflicts associated with WECS in suburban and urban areas is greater than in rural areas. Local governments must determine where and under what conditions wind energy systems are appropriate and whether nuisances and conflicts of wind energy outweigh the benefits of wind energy.

Understand Your Goals

The first step in creating a wind energy ordinance is to identify the community’s goal to be achieved by the regulation. Some communities want to encourage renewable energy generation. Other communities are primarily concerned with mitigating conflicts between wind energy systems and other land uses. The first goal leads to the question of where should the community give priority to wind energy. This in turn requires the community to understand where there might be a meaningful wind energy resource; trees, buildings, and topography all have a substantial effect on the viability of the local wind resource. The second goal leads to the question of whether wind energy is appropriate for the community, and how extensively to restrict it. Communities can choose to prohibit WECS, except for those installations that are in the regulatory province of the State. Not allowing WECS in locations in areas with poor wind resources can have a positive effect on developing local energy opportunities, by guiding land owners to focus on energy efficiency, solar energy, or other resources more suitable for their site.

Model Wind Energy Ordinance

This ordinance (July, 2017 version) is drawn from a number of sources, including other model ordinances, regulatory findings, state law, and local examples. Minnesota first developed a model ordinance for county governments in 2005 (Clean Energy Resource Teams, the Minnesota Project, and County Zoning Administrators). That model focused on utility-scale wind development (multiple turbines rated in megawatt (MW) of capacity). Subsequent versions have incorporated model language for smaller, accessory use turbines.

This model adopts standards for large turbines set by the Minnesota Public Utilities Commission in its 2008 order, Docket E-G-999/M-07-1 102.

A variety of model ordinance and ordinance examples informed the development of this model. Example sources include:

- Distributed Wind Model Zoning Ordinance, DWEA, 2014
- AWEA Small Wind Zoning Ordinance, October 2004
- Washington State Wind Energy Toolkit, Northwest Wind, 2015
- Small Wind Energy Guide: Kandiyohi County, Minnesota, August 2007
- City of Mahtomedi WECS Ordinance

Community, County, City, Township

This model uses the term “community” to refer to all types of local governments. The ordinance language refers to “model community” as a substitute for the name of the local government.
Large WECS, Small WECS

In order to address the issues associated with WECS, local governments must understand that WECS come in many different sizes and designs, with dramatically different impacts on and benefits to the community. The first distinction communities need to make in addressing WECS in their development regulations is between systems that are primarily designed as electric power generators for utility systems or wholesale power markets, and those that are designed primarily to provide power to a single residence or business. The former use utility-scale turbines with a capacity measured in megawatts, rise hundreds of feet into the air, and are typically (but not always) part of a wind farm system with other similar turbines. The latter are, by contrast, small in terms of generating capacity, usually shorter in height, and are installed one at a time rather than in wind farms. Non-utility-scale wind systems are further divided into large, small, and micro-wind systems. Where these divisions are made is highly dependent upon the community character, the type of local government, and the magnitude of the wind resource. This model ordinance uses a tier classification to distinguish between these different scales of WECS. Tier I refers to systems at utility scale; Tier II WECS include systems that are primarily used for power on-site or those that are net-metered; and Tier III WECS are exclusively behind-the-meter turbines up to 40 KW in capacity, including micro turbines that one might see in an urban area.

Elements of a WECS Ordinance

Counties, cities, and townships are enabled to regulate land use under Minnesota Statutes 394 and 462 for the purpose of: “promoting the health, safety, morals, and general welfare of the community.” How wind energy land use issues affect each type of community will significantly change the structure and focus of the WECS ordinance. Some common elements to consider in all communities are noted below.

A. Distinguish between Types of Wind Energy Applications

As noted earlier in the introduction, the community will need to distinguish between the different sizes of wind energy systems relative to the typical lot size, density, natural resources, and wind resource. Two or three categories of WECS may need to be identified in the ordinance: large scale (Tier I), large and small accessory use (Tier II) in counties, and very small (Tier III, or micro-WECS) in non-rural or residential rural areas.

B. Define Necessary Permits

Some WECS can be listed as permitted uses, but others should be considered conditional uses, and some applications should be prohibited. Prohibited applications can be either listed explicitly as prohibited, or simply not identified as either conditional or permitted. Tier I WECS should, where allowed, always be conditional, in order to ensure that the specific design of the system minimizes nuisances and allow for public comment. Tier II I WECS in rural areas should probably be permitted uses, with some performance or design standards to ensure compatibility with the landscape and other land uses. Conditional use permits may be justified for Tier II I systems where housing density

Why Zone for Small Wind Systems?

Your family’s electric bill has climbed to $400 per month and you expect it go higher. You are worried how global warming will affect your kids. And you don’t want to wait around for others to fix these problems. Generating your own, clean power sounds like a great idea, and something you may even be able to afford with the rebate program your state offers for small wind turbines. So you spend months researching equipment, your neighborhood’s wind resource, and ways to pay for a new turbine. All your ducks are finally in line, but when you apply for a building permit, the county office has never heard of small wind systems, or if they have, only of rumors that they are noisy and kill birds. This technology is also nowhere to be found in the zoning code and it is hard for the zoning office to find out information about how to treat this unique structure. Or, since the closest thing the zoning office has dealt with before is large, utility-scale turbines, your 5 kilowatt turbine is treated the same as a 50,000 kilowatt power plant and the permitting requirements and costs are impossibly out of reach.

is greater than a rural setting. WECS on lots smaller than one acre become problematic, although in certain circumstances half-acre lots can accommodate micro-WECS. Urban density areas (third-acre lots, either in existence or planned) should not include WECS as a permitted or conditional use, barring a change in technology that allows for decreased visual, safety, and noise impacts.

If the community chooses to utilize a wind-energy overlay district, a greater degree of flexibility should be built into the development process. Tier I projects should probably still be conditional, but fewer conditions will allow the district to serve as an encouragement for sustainable development of local wind resources.

C. Identify Wind Resource Standards
Communities should identify where optimal wind resources are located, or identify the conditions that define legitimate wind resources. Installing WECS in areas with minimal wind resources is bad for both the landowner and the community. The Minnesota Department of Commerce has wind resource maps for the entire state at a 500 meter resolution. Alternatives to the statewide maps include site-specific certification by a certified wind energy assessor or installer, or performance criteria that identify the turbine will be above trees and buildings for a minimum radius distance.

D. Establish Setbacks
Communities need to identify setbacks that protect surrounding land uses and community character but still allow the community's wind resource to be developed. Examples of land uses that could dictate setbacks include:

1. Residential homes, distinguishing between homes of people who are financially participating in the project and those who are not.
2. Property lines and road rights-of-way.
3. Designated conservation or wildlife areas, wetlands, scenic river bluffs, designated scenic byways, and protected view sheds.
4. Other wind energy systems, as turbines must be located far enough from each other in order to avoid creating turbulence that diminishes the value of nearby wind resources.

E. Establish Safety Standards
Communities need to identify safety standards that are protective without effectively prohibiting the WECS. Requiring engineering certification on very small free-standing systems has the same effect as prohibiting WECS. Residential areas may need some consideration of a tower as an attractive nuisance, and reasonable fall zones should always be considered.

F. Establish Design Standards
Design standards need to be matched to the type of WECS. Tier I systems should always have tubular towers. Treatment of power lines, color, lighting, signage, and substations should be specified. Tier II systems, depending on the allowed height and the surrounding land uses, may also have specific design considerations that must be followed. All WECS other than the micro-WECS category should have a decommissioning plan and provisions.

G. Establish Other Applicable Standards
Noise standards are particularly important for Tier II systems in non-agricultural areas for the satisfaction of surrounding land owners and protection of the WECS owner from unwarranted complaints. Minnesota state law is based on a standard of 50 decibels at the nearest residence. Building and electric code compliance and FAA regulations may also need to be addressed. Cities and rural areas near denser development may need to address visual impacts.
H. Minimize Infrastructure Impacts

Regulations governing Tier I systems need to address the risk to roads for both initial transportation of components and on-going maintenance of the WECS. Any system (Tier I or Tier II) that includes excavations for creating a foundation needs to protect drainage systems, including tile systems and overland drainage. Telecommunications infrastructure can be affected if care is not taken. Green infrastructure can also be affected, including habitat systems and natural view sheds that define community character.

I. Wind Energy Conversion System Ordinance

A. Purpose

- This ordinance is established to regulate the installation and operation of Wind Energy Conversion Systems (WECS) within Model Community not otherwise subject to siting and oversight by the State of Minnesota under the Minnesota Power Plant Siting Act (MS 216E.01 – 216E.18), encourage local wind energy development in priority wind energy areas, and meet Model Community’s Comprehensive Plan goals, including the following:

1. **Goal** - Encourage the sustainable use of local economic resources.

2. **Goal** - Encourage development that helps meet Model Community’s and the State of Minnesota’s climate protection goals.

3. **Goal** - Minimize conflicts between desirable land uses that may need to coexist in the same area.

B. Interpretation, Conflict, and Separability

1. **Interpretation** - In interpreting these regulations and their application, the provisions of these regulations shall be held to be the minimum requirements for the protection of public health, safety, and general welfare. These regulations shall be constructed to broadly promote the purposes for which they are adopted.

2. **Conflict** - These regulations are not intended to interfere with, abrogate or annul any other ordinance, rule or regulation, statute or other provision of law except as provided in these regulations. No other provision of these regulations that impose restrictions different from any other ordinance, rule or regulation, statute or provision of law, the provision that is more restrictive or imposes higher standards shall control.

3. **Separability** - If any part or provision of these regulations or the application of these regulations to any developer or circumstances is a judged invalid by any competent jurisdiction, the judgment shall be confined in its operation to the part, provision or application directly involved in the controversy in which the judgment shall be rendered and shall not affect or impair the validity of the remainder of these regulations or the application of them to other developers or circumstances.

Adapting the Model Standards

The standards within this ordinance are provided for reference, and should be modified to meet local conditions of the reader. This ordinance, with the exception of the final micro-WECS section, is primarily written for situations typical in rural agricultural areas of Minnesota. For distributed wind (Tier II) installations, cities and counties might need to modify these standards to reflect small lots and local topography. Many standards will need to be adapted for communities that are less rural or that have lower quality or more sporadic wind resources due to forested lands or topography. Most cities can disregard virtually all of the Tier I WECS provisions except for the possibility of isolated large turbines on very large parcels, or single turbines within large commercial, industrial or institutional areas.

Interpretation, Conflict and Separability

The community may wish to examine the Interpretation, Conflict and Separability language in its other ordinances and utilize consistent language.
C. Enforcement, Violations, Remedies and Penalties - Enforcement of the Wind Energy Conversion System Ordinance shall be done in accordance with process and procedures established in Section _____ of the Model Community Zoning Ordinance.

D. Definitions

Aggregated Project - Aggregated projects are those which are developed and operated in a coordinated fashion, but which have multiple entities separately owning one or more of the individual WECS within the larger project. Associated infrastructure such as power lines and transformers that service the facility may be owned by a separate entity but are also included in the aggregated project.

Blade Arc - The arc created by the edge of the rotor blade that is farthest from the nacelle.

Fall Zone - The area, defined as the furthest distance from the tower base, in which a tower will collapse in the event of a structural failure. This area is no greater than the total height of the structure.

Feeder Line - Any power line that carries electrical power from one or more wind turbines or individual transformers associated with an individual wind turbine to the point of interconnection with the electric power grid, in the case of interconnection with the high voltage transmission systems the point of interconnection shall be the substation serving the WECS.

Meteorological Tower - For the purposes of this Wind Energy Conversation System Ordinance, meteorological towers are those towers which are erected primarily to measure wind speed and directions plus other data relevant to siting WECS. Meteorological towers do not include towers and equipment used by airports, the Minnesota Department of Transportation, or other similar applications to monitor weather conditions.

Micro-WECS - Micro-WECS are WECS of five (5) kW nameplate generating capacity or less mounted on a tower.

Non-Participating - Any landowner except those on whose property all or a portion of a Wind Energy Facility is located pursuant to an agreement with the Facility Owner or Operator.

Project Site – The geographic area of an aggregated site or wind farm project that includes location of all turbines.

Property Line - The boundary line of the area over which the entity applying for WECS permit has legal control for the purposes of installation of a WECS. This control may be attained through fee title ownership, easement, or other appropriate contractual relationship between the project developer and landowner.

Aggregated Projects

Large electric generating facilities are regulated by the State rather than by local governments. Aggregated projects having a combined capacity equal to or greater than the threshold for State oversight as set forth in MS Statute 216F.01 through 216F.09 (currently 5 MW for wind energy projects, except as noted below) shall be regulated by the State of Minnesota. Tier I wind developments (wind farms) are, however, sometimes broken into phases, or separated by ownership but not by geography. In 2007, the Statute setting regulatory thresholds was changed to allow counties the option of regulating wind energy projects of up to 25 MW (216.F.08), if they follow the process defined in Statute.

Micro-WECS

This model ordinance recognizes a separate category for very small WECS that has a lower threshold for land use approval. The example here uses a capacity threshold of five kW, quite small for a generator, on a 60-foot tower, the minimum height for meaningful production. Urban communities may consider setting a smaller capacity (2 kW) and regulations for shorter towers and building mounted systems. But these systems remain unproven and are little more than curiosities; technology does not currently exist to generate meaningful energy in turbulent and low speed urban wind.
Public Conservation Lands - Land owned in fee title by State or Federal agencies and managed specifically for conservation purposes, including but not limited to State Wildlife Management Areas, State Parks, State Scientific and Natural Areas, federal Wildlife Refuges and Waterfowl Production Areas. For the purposes of this section public conservation lands will also include lands owned in fee title by non-profit conservation organizations. Public conservation lands do not include private lands upon which conservation easements have been sold to public resource management agencies or non-profit conservation organizations.

Rated Power Output – the electric power output of a WECS at a constant hub height and wind speed of 25 mph.

Rotor Diameter - The diameter of the circle described by the moving rotor blades.

Shadow Flicker – Alternating changes in light intensity caused by the movement of Wind Turbine blades casting shadow on the ground or a nearby stationary object.

Substations - Any electrical facility designed to convert electricity produced by wind turbines to a voltage greater than (35,000 KV) for interconnection with high voltage transmission lines shall be located outside of the road right of way.

Tier I WECS - Utility Scale WECS of equal to or greater than 200 kW in total name plate generating capacity.

Tier II WECS - A WECS less than 200 kW in total name plate generating capacity, these include systems that are primarily used for power on-site or those that are net-metered.

Tier III WECS - Small WECS that are exclusively behind-the-meter turbines up to 40 KW in capacity, including micro turbines that may be found in urban area.

Total Height - The highest point, above ground level, reached by a rotor tip or any other part of the WECS.

Transmission Line - Those electrical power lines that carry voltages of at least 69,000 volts (69 KV) and are primarily used to carry electric energy over medium to long distances rather than directly interconnecting and supplying electric energy to retail customers.

Tower - Towers include vertical structures that support the electrical generator, rotor blades, or meteorological equipment.

Tower Height - The total height of the WECS exclusive of the rotor blades.

WECS - Wind Energy Conversion System - An electrical generating facility comprised of one or more wind turbines and accessory facilities, including but not limited to: power lines, transformers, and substations that operate by converting the kinetic energy of wind into electrical energy. The energy maybe used on-site or distributed into the electrical grid.
Minnesota Local Government Wind Toolkit

Wind Turbine - A wind turbine is any piece of electrical generating equipment that converts the kinetic energy of blowing wind into electrical energy through the use of airfoils or similar devices to capture the wind.

E. Procedures for Permits - Zoning, Land Use, and Conditional Use permits and Variances shall be applied for and reviewed under the procedures established in this Ordinance, except where noted below.

1. The application for all WECS shall include the following information:
 a. The name(s) of project applicant(s)
 b. The name(s) of the project owner(s)
 c. The legal description and address of the project
 d. A description of the project including: number, type, name plate generating capacity, tower height, rotor diameter, and total height of all wind turbines and means of interconnecting with the electrical grid.
 e. Location of property lines, wind turbines, electrical wires, interconnection points with the electrical grid, all related accessory structures, and all areas to be used for staging during construction or for maintenance, including distances and drawn to scale.
 f. Location and height of all buildings, structures, above ground utilities and trees located within five hundred (500) feet of each proposed Tier II WECS and within three rotor diameters of each Tier 1 WECS.
 g. Decommissioning plan, micro-WECS are exempt.
 h. An elevation drawing accurately depicting the proposed WECS and its relationship to structures on the subject site and adjacent lots.
 i. Engineer’s certification of tower structure and foundation. Manufacturer certification and specification sheets may, at the discretion of Model Community, be used in place of engineering study for Tier II WECS.
 j. Documentation of land ownership or legal control of the property.
 k. All WECS shall submit a copy of the interconnection agreement (or application for interconnection) with the utility or documentation that an interconnection agreement is not necessary.

Submittal Requirements

The information gathered from permit submittal is important to ensure the integrity and safety of a project, but can also provide valuable information to help the local government and the State better understand the value of distributed wind energy. Some elements, such as longitude and latitude, are useful data to attain and may be more easily acquired by the local government staff rather than the project applicant, particularly for small systems.

Objects Within 500 Feet

Identifying structures and trees within 500 feet of the proposed WECS helps the community document that the WECS is being installed in an area with legitimate wind resources. Turbines generally must be 20-40 feet above trees and buildings within 500 feet to operate as designed.

Other Permits, Requirements

This permit procedure section refers only to zoning and land use permits. Other permits or requirement will also need to be acquired by developers. Local governments can reference some of those other permit requirements in the zoning ordinance if that makes sense for their ordinance structure. Or the local government can use a development agreement to stipulate specific standards that might not be standard. Examples include 911 addressing, road closure requirements or construction permits, regulatory signage, cross jurisdictional requirements, etc.
Minnesota Local Government Wind Toolkit

1. Tier II WECS that are not connected to the electric grid shall identify location of battery or other storage device.

2. The application for Tier I WECS shall also include:
 a. The latitude and longitude of individual wind turbines.
 b. A USGS topographical map, or map with similar data, of the property and surrounding area, including any other WECS within 10 rotor diameters of the proposed WECS.
 c. Location of lakes, wetlands, parks, federal or state habitat areas, other protected natural areas, and County Biological Survey sites within the project site for multi-turbine projects or within 1,320 feet of any WECS.
 d. An acoustical analysis documenting the sound level within 1000 feet of the turbine
 e. FAA Permit Application
 f. Location of all known communications towers within 2 miles of the proposed WECS
 g. Decommissioning Plan that includes a provision financial assurances at the discretion of Model Community.
 h. Model Community may require a shadow flicker study where a Tier 1 turbine’s shadow is cast on a non-participating property within the project area.
 i. Identification of existing WECS within a 1-mile radius of the project site and description of potential impacts on wind resources on adjacent properties.
 j. Identification of all non-participating residences within the boundaries of the project site.

F. Procedure for Aggregated Projects - Aggregated projects may jointly submit a single application and be reviewed under a single proceeding, including notices, hearings, reviews and approvals. Permits will be issued and recorded separately. Joint applications will be assessed fees as one project.
G. District Regulations - WECS will be permitted, conditionally permitted, or not permitted based on the generating capacity and land use district as established in the table below:

<table>
<thead>
<tr>
<th>District</th>
<th>Tier II*</th>
<th>Tier I</th>
<th>Meteorological Tower*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture (A-1, A-2, A-3)</td>
<td>Permitted</td>
<td>Conditionally Permitted</td>
<td>Permitted</td>
</tr>
<tr>
<td>Rural Residential</td>
<td>Conditionally permitted</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
<tr>
<td>Rural Town Site</td>
<td>Not permitted</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
<tr>
<td>General Business District</td>
<td>Not permitted</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
<tr>
<td>Highway Commercial</td>
<td>Conditionally permitted</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
<tr>
<td>Light Industry</td>
<td>Permitted</td>
<td>Conditionally permitted</td>
<td>Permitted</td>
</tr>
<tr>
<td>Heavy Industry</td>
<td>Permitted</td>
<td>Conditionally permitted</td>
<td>Permitted</td>
</tr>
<tr>
<td>Shoreland</td>
<td>[may depend upon the lake and the specific district]</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
<tr>
<td>Urban Expansion Overlay District</td>
<td>Conditionally permitted</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
<tr>
<td>Conservation / Special Protection</td>
<td>[depends on the district purpose, the protected resource and the impacts of a turbine on that resource]</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
<tr>
<td>Wild and Scenic River</td>
<td>Conditionally permitted</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
</tbody>
</table>

* Tier II WECS and Meteorological towers shall require a conditional use permit if over ______ feet in height in accordance with the Model Community Zoning Ordinance.

Alternatives to Zoning District Regulation

An alternative to setting Tier I WECS standards for each zoning district is to establish a Wind Energy Development Overlay District. The community can pro-actively identify where the conditions are good and bad for large scale wind development based on community priorities such as view shed protection, natural resource areas, or ultimate build-out for rural residential or urban development. The community would map an overlay with a separate set of WECS standards. The overlay concept could also be applied to small (Tier II) WECS in some circumstances.

Land Use Table

The land use table shown here is for a county or rural community. Urban and suburban communities will have a very different set of zoning districts and land use considerations. However, the Tier I and II WECS are probably not appropriate for urban (under 1 acre lot size) and for most districts with lots at 2 or less acres. Tier III (micro-WECS) are separately addressed at the end of this model ordinance.
H. Setbacks, Wind Turbines and Meteorological Towers

1. **Setbacks** - All towers shall adhere to the setbacks established in the above table.
2. **Substations and Accessory Facilities** - Minimum setback standards for substations and feeder lines shall be consistent with the standards established in the Model Community General Development Standards for Essential Services.

<table>
<thead>
<tr>
<th>Property Lines</th>
<th>Tier II & Tier III Wind Turbines</th>
<th>Tier I Wind Turbines</th>
<th>Meteorological Tower</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.1 times the total height in Agricultural or Industrial Land Use Districts only, or the distance of the fall zone, as certified by a professional engineer + 10 feet.</td>
<td>5 rotor diameters along the primary wind axis, 3 rotor diameters along the secondary wind axis (rotor diameters are between 250-400 feet)</td>
<td>The fall zone, as certified by a professional engineer, + 10 feet or 1.1 times the total height.</td>
</tr>
<tr>
<td>Residential Dwellings, participating*</td>
<td>NA</td>
<td>750 feet</td>
<td>The fall zone, as certified by a professional engineer, + 10 feet or 1.1 times the total height.</td>
</tr>
<tr>
<td>Residential Dwelling, non-participating</td>
<td>Encompassed in property line setback.</td>
<td>1,000 feet</td>
<td>The fall zone, as certified by a professional engineer, + 10 feet or 1.1 times the total height.</td>
</tr>
<tr>
<td>Road Rights-of-Way**</td>
<td>The distance of the fall zone as certified by a professional engineer + 10 feet or 1 times the total height.</td>
<td>1 times the height, may be reduced for minimum maintenance roads or a road with Average Daily Traffic count of less than 10.</td>
<td>The fall zone, as certified by a professional engineer, + 10 feet or 1 times the total height.</td>
</tr>
<tr>
<td>Other Rights-of-Way (Railroads, power lines, etc.)</td>
<td>The lesser of 1 times the total height or the distance of the fall zone, as certified by a professional engineer + 10 feet.</td>
<td>To be considered by the planning commission</td>
<td>The fall zone, as certified by a professional engineer, + 10 feet or 1 times the total height.</td>
</tr>
<tr>
<td>Public conservation lands</td>
<td>1.1 times the total height</td>
<td>600 feet</td>
<td>600 feet</td>
</tr>
<tr>
<td>Wetlands, USFW Types III, IV and V</td>
<td>NA</td>
<td>600 feet</td>
<td>600 feet</td>
</tr>
<tr>
<td>Other Structures</td>
<td>To be considered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Existing WECS</td>
<td>5 rotor diameters from existing WECS on adjacent parcels</td>
<td></td>
<td>Several factors to be considered in order to minimize or eliminate impact on existing WECS includes: the relative size of the existing and proposed WECS, the alignment of the WECS relative to the predominant winds, topography, the extent of wake interference impacts on existing WECS, and other considerations. Waived for internal setbacks in multiple turbine projects including aggregated projects.</td>
</tr>
<tr>
<td>_____ River Bluff</td>
<td>500</td>
<td></td>
<td>[1,000 / 1,320]</td>
</tr>
</tbody>
</table>

* The setback for dwellings shall be reciprocal in that no dwelling shall be constructed within 750 feet of a Tier I wind turbine.
** The setback shall be measured from future rights-of-way if a planned changed or expanded right-of-way is known.
I. Requirements and Standards

1. Safety Design Standards

a. **Engineering Certification** - For all WECS, applicant must provide engineering certification of turbine, foundation, and tower design is within accepted professional standards, given local soil and climate conditions. For Tier II and micro-WECS, certification can be demonstrated by the manufacturer’s engineer or another qualified engineer.

b. **Rotor Safety**. Each Tier II WECS shall be equipped with both a manual and automatic braking device capable of stopping the WECS operation in high winds (40 mph or greater).

c. **Warnings**

 i. For all Tier I WECS, a sign or signs shall be posted on the tower, transformer and substation warning of high voltage. Signs with emergency contact information shall also be posted on the turbine or at another suitable point.

 ii. For all guyed towers, visible and reflective objects, such as plastic sleeves, reflectors or tape, shall be placed on the guy wire anchor points and along the outer and innermost guy wires up to a height of 8 feet above the ground. Model Community may require that visible fencing be installed around anchor points of guy wires.

 iii. Consideration shall be given to painted aviation warning on meteorological towers of less than 200 feet.

d. **Energy Storage** - Batteries or other energy storage devices shall be designed consistent with the Minnesota Electric Code and Minnesota Fire Code.
2. Equipment Design and Performance Standards

a. **Established Wind Resource** - All WECS shall only be installed where there is an established wind resource. An established wind resource can be documented in the following ways:

i. The planned turbine site has a minimum 11 MPH average wind speed at the designed hub height, as documented on the most recent version of Minnesota Department of Commerce statewide wind speed maps.

ii. The planned turbine has a minimum hub height of eighty (80) feet and the blade arc is 30 feet higher, on a vertical measurement, than all structures and trees within 300 feet of the tower.

iii. The applicant submits an analysis conducted by a certified wind energy installer or site assessor (North American Board of Certified Energy Professional, NABCEP, or equivalent) that includes estimates of wind speed at turbine height based on measured data, estimated annual production, and compliance with the turbine manufacturer’s design wind speed.

iv. The proposed turbine is within the community’s designed wind energy overlay district.

b. **Total Height, Tier II & III WECS** - Tier II & III WECS shall have a total height, including tower and rotor at its highest point, of less than 200 feet in rural and industrial zoning districts, and a maximum height of 125 feet in residential and commercial districts.

c. **Turbine Certification** - Tier II & III WECS turbines shall be certified or in the process of being certified the Small Wind Certification Council (SWCC) Micro-generation Certification Scheme (MCS), or must be listed by the Interstate Turbine Advisory Council.

d. **Meteorological Towers Exempt from Zoning District Height Standards** - In those districts where meteorological towers are a permitted use, meteorological towers of less than 200 feet shall be exempt from the Conditional Use requirement for other land uses.

e. **Tower Configuration**

i. All Tier I wind turbines shall be installed with a tubular, monopole type tower.

ii. Meteorological towers may be guyed.
f. **Color and Finish**

i. All Tier I wind turbines and towers that shall be white, grey and another non-obtrusive color. Blades may be black in order to facilitate deicing. Finishes shall be matt or non-reflective.

ii. Exceptions may be made for metrological towers, where concerns exist relative to aerial spray applicators.

g. **Lighting** - Lighting including lighting intensity and frequency of strobe, shall adhere to but not exceed requirements established by Federal Aviation Administration permits and regulations. Red strobe lights are preferred for nighttime illumination to reduce impacts on migrating birds. Red pulsating incandescent lights should be avoided. Exceptions may be made for metrological towers, where concerns exist relative to aerial spray applicators.

h. **Other Signage** - All signage on site shall comply with the Model Community sign ordinance. The manufacturer’s or owner’s company name and /or logo may be placed upon the nacelle, compartment containing the electrical generator, of the WECS.

i. **Feeder Lines** - All communications and feeder lines, equal to or less than 34.5 kV in capacity, installed as part of a WECS shall be buried where reasonably feasible. Feeder lines installed as part of a WECS shall not be considered an essential service, as described in Model Community’s General Development Standards.

j. **Waste Disposal** - Solid and hazardous wastes, including but not limited to crates, packaging materials, damaged or worn parts, as well as used oils and lubricants, shall be removed from the site promptly and disposed of in accordance with all applicable local, state and federal regulations.

k. **Shadow Flicker** - Tier I WECS shall be designed to avoid unreasonable adverse shadow flicker effect at any occupied buildings located on a non-participating property. Model Community may require a shadow flicker study to evaluate the degree of exposure for non-participating buildings.

3. **Discontinuation and Decommissioning**

a. **Abandonment**. A WECS shall be considered abandoned after one (1) year without energy production, unless a plan is developed and submitted to the Model Community Zoning Administrator outlining the steps and a schedule for returning the WECS to service. All WECS and accessory facilities shall be removed to [ground level / four feet below ground level] within 80 days of abandonment.
b. **Decommissioning Plan Required** – Tier I and Tier II WECS shall have a decommissioning plan outlining the anticipated means and cost of removing WECS at the end of their serviceable life or upon abandonment. The cost estimates shall be made by a competent party; such as a Professional Engineer, a contractor capable of decommissioning or a person with suitable expertise or experience with decommissioning. The plan shall also identify the financial resources that will be available to pay for the decommissioning and removal of the WECS and accessory facilities. For Tier I WECS Model Community may, at its discretion, require a letter of credit or security bond with adequate funds to cover decommissioning costs, and naming the Community as the executor so decommissioning of the turbine(s) can be completed if necessary.

c. **Repowering** – Repowering Tier 1 or Tier II WECS is an allowed alternative to decommissioning at the end of the turbine’s life. Repowering must not change any regulated component or design element of the turbine, as originally approved in the conditional use permit.

4. **Orderly Development**

Upon issuance of a conditional use permit, all Tier I WECS applicants shall notify the appropriate State of Minnesota’s Siting Act program Staff of the project location and provide details on the survey form specified by the agency.

J. **Other Applicable Standards**

1. **Noise** - All WECS shall comply with Minnesota Rules 7030 governing noise, or shall not exceed fifty (50) dB(A) when measured from the outside of the nearest residence, business, school, hospital, religious institution, or other inhabited structure. The audible noise from wind energy facilities may periodically exceed allowable noise levels during extreme wind events (winds above 30 mph or greater).

2. **Electrical Codes and Standards** - All WECS and accessory equipment and facilities shall comply with the National Electrical Code and other applicable standards.

3. **Federal Aviation Administration** - All WECS shall comply with FAA standards.

K. **Interference**

The applicant shall minimize or mitigate any interference with electromagnetic communications, such as radio, telephone, microwaves, or television signals cause by any WECS. The applicant shall notify all communication tower operators within ___ miles of the proposed WECS location upon application to Model Community for permits. No WECs shall be constructed so as to interfere with Model Community or Minnesota Department of Transportation microwave transmissions.

Discontinuation and Decommissioning

Provisions for decommissioning the site after productive use has stopped protects the community in a variety of ways. Removal of the tower and accessory structures will limit the potential for blight and safety concerns associated with un-maintained equipment. An alternative to removal is restoration of the site, in which subterranean fixtures/foundations are also removed. Restoration will facilitate the return of the site to agricultural production or other uses. The community should also require that the developer post a decommissioning bond or other financial assurance. The local government should not bear the risk of decommissioning should the wind developer go bankrupt.

Repowering

This ordinance allows repowering of existing turbines, provided the regulated design and performance specifications are not changed. Communities should consider how to address repowering of approved WECS.

Interference

The radius for notifying communications tower operators will likely be two to five miles, depending on the community.
L. Avoidance and Mitigation of Damages to Public Infrastructure by Tier 1 WECS

1. **Roads** - Applicants for Tier I WECS shall:
 a. Identify all county, city or township roads to be used for the purpose of transporting WECS, substation parts, cement, and/or equipment for construction, operation or maintenance of the WECS and or substation and obtain applicable weight and size permits from impacted road authority(ies) prior to construction.
 b. At the request of the road authority, the applicant shall post bonds or other financial assurance, subject to approval of Model Community, sufficient to restore the road(s) to pre-construction conditions.

2. **Drainage System** - The Applicant shall be responsible for immediate repair of damage to public and private drainage systems stemming from construction, operation or maintenance of the WECS, for the life of the project.

3. **Green Infrastructure** - The Applicant shall meet the Minnesota Department of Natural Resources Guidance for Wind Projects, June, 2009 version or most recent version, for siting wind energy facilities and mitigation of risk to natural resources, including the following standards:
 a. Provide the following information in the application:
 i. natural heritage concerns within the project
 ii. public lands within one mile of the project
 iii. conservation easements and other officially protected natural areas within a quarter mile of the project
 iv. shoreland areas, wildlife corridors and habitat complexes, and designated scenic views.
 b. Demonstrate how the project integrates the United State Fish and Wildlife Service (USFWS) best management practices for minimizing impacts to wildlife from wind energy projects.

M. Tier III (Micro-Turbine) Standards

1. **Urban Lots** - Micro-WECS shall be allowed on lots of less than one acre provided the following conditions are met:
 a. WECS are a permitted or conditional accessory land use in the _______ districts.
 b. The tower shall meet all setback requirements applicable to the lot. In all cases the base of the tower shall be setback from all property lines by a minimum of the height of the tower plus 10 feet.
 c. The tower height is less than 70 feet.

Avoidance and Mitigation of Damages

Transporting large wind turbines and components to remote sites sometimes requires using roads that are not rated for the weight of the turbine. Developers should notify local road authorities and mitigate for damage risk prior to transporting the turbine and equipment.

Similar provisions should be made for green infrastructure. The USFWS and the Minnesota DNR have adopted guidelines for identifying risks and best management practices for mitigating those risks. If the community uses a wind overlay approach rather than the district-based regulation outlined here, the DNR guidelines can help define the overlay district.

Standards for Micro-WECS

Communities should also consider standards for very small (micro) WECS. In particular, cities and counties with large-lot residential development (2 - 10 acre lots) are likely to need to address interest in wind energy installations for residential homes. These installations will likely be less than 10kW and be 60 to 100 feet in height. Some urban areas allow small WECS with even smaller towers. At tower heights lower than 60 feet, however, the wind resource becomes turbulent and loses much of its power, and is thus of small value as an energy source.
d. The proposed system must be certified to operate at noise levels lower than 50 db at a distance no greater than the distance from the base of the tower to the closest property line.

2. **Suburban Lots** - Micro-WECS shall be allowed on lots larger than two acres provided the following conditions are met:
 a. WECS are a permitted or conditional land use in the ________ districts.
 b. Provisions of Section I.2.a (Established Wind Resource) are met.
 c. The setback requirements applicable to the lot are met. In all cases the base of the tower shall be setback from all property lines by a minimum of the height of the tower plus 10 feet. For guyed towers the setback can be reduced if the documented fall zone is less than the tower height, but in no case shall the setback be less than the distance from the base of the tower to the nearest building off the site, plus 10 feet.
 d. The tower height is less than 101 feet.
 e. The proposed system must be certified to operate at noise levels lower than 50 db at a distance no greater than the distance from the base of the tower to the closest property line.

3. **Building Mounted Systems** - Building mounted WECS shall be setback from property lines by a distance equal to the tower height, and shall provide engineering documentation that the structure upon which the wind energy conversion system is to be mounted shall have the structural integrity to carry the weight and wind loads of the wind energy conversion system and have minimal vibration impacts on the structure.

Resources for Urban Micro-Turbine Ordinances

A. **Building-Integrated Standards**: The City of Minneapolis includes ordinance language regulating micro-turbines that are integrated into buildings, but requires an engineering analysis to demonstrate safety. Source: City of Minneapolis Zoning Code 537.730

B. **Performance Standards for Urban Wind**: The City of Mahtomedi zoning ordinance includes performance standards requiring a demonstration of a quality wind resource in an urban area. Source: City of Mahtomedi Zoning Ordinance, Subd. 9.4A

C. **Economic Opportunity**: The City of St. Louis Park excludes wind turbines, except where there is reasonable economic opportunity to capture wind energy. Source: City of St. Louis Park Zoning Code, Section 36-369.